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Abstract

The paper shows that the Re. ssner-Mlindlin plate model for clamped-In

boundary condition does not capture the boundary layer behavior for the

bending moments. This boundary layer is present In the 3 dimensional formula-

tion. In contrast the (1,1,2) model shows this boundary layer. The strength

of the boundary layer for the (1,1,2) model Is analyzed.
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1. Introduction

There are many plate models which try to approximate the solution of the

three dimensional plate problem by a system of differential equations in two

dimensions. Denoting the thickness of the plate by d, then the difference

between the solution of these models and the three dimensional solution con-

verges to zero (in the scaled energy norm) as d--O. The two best known

models are the Kirchhoff and the Reissner-Mindlin model. The major difference

between various models is the boundary layer behavior of the solution. The

boundary layer leads to large differences in moments and shear forces in the

boundary region.

If the boundary is smooth and the load is also smooth then the Kirchhoff

solution is smooth up the boundary. In contrast, the Reissner-Mindlin

solution has a boundary layer behavior whose strength depends on the type of

boundary condition. In [1] (2] a rigorous analysis of the boundary layer

behavior for the Reissner-Mindlin solution on a smooth domain Is given. Among

other things, it is shown that the boundary layer is strongest for the soft

simple support and is very weak for the clamped-in boundary condition.

The Kirchhoff model, in general, gives accurate results in comparison

with the 3 dimensional solution when the boundary layer is weak. Hence it

could be expected that for the clamped boundary condition, the Kirchhoff as

well as the Reissner-Mindlin model yield reliable and high quality results up

to the boundary. However, this is not the case. The Reissner-Mindlin model

completely "misses" in this case, the boundary layer which Is stronger than

any predicted by this model.

To show this, let us consider the problem of the uniformly loaded square

1
plate w - (xl,x2 1 lxi <1, i - 1,2} with thickness d - 1/100. We assume

that the material of the plate is homogeneous, isotropic and its Poisson ratio

1



v - 0.3. In the Table 1 we show the moments M1 ,1 (x1 ,0), M2 2 (x1,0) for

0< x1 < 0,5 computed from the 3 dimensional formulation, Reissner-Mindlin

solution (K = 0.87) and the solution of the model (1,1,2) which will be

addressed in the Section 2.

Table 1. The moments M,1 (Xl,) and M2,2(XlO)

1,,1(iIO)M 2 2 (X1,0)

M1,1 N1 0)M2,2 N1'0

x 3D RM (1,1,2) 3D RM CRX% 1,1,2) C112%

0 -0.0229 -0.0229 -0.0229 -0.0229 -0.0229 0 -0.0229 0
.2000 -0.0157 -0.0157 -0.0157 -0.0163 -0.0163 0 -0.0163 0
.4000 +0.0164 +0.0163 +0.0164 +0.0026 +0.0027 0 +0.0026 0
.4900 0.0470 0.0470 0.0470 0.0141 0.0141 0 0.0141 0
.4930 0.0483 0.0483 0.0483 0.0145 0.0144 0 0.0144 0
.4990 0.0509 0.0509 0.0509 0.0168 0.0152 9.2 0.0170 1.4
.4993 0.0510 0.0510 0.0510 0.0176 0.0153 12.3 0.0179 2.1
.4999 0.0512 0.0512 0.0512 0.0207 0.0153 25.3 0.0212 2.8
.5000 0.0513 0.0513 0.0513 0.0220 0.0153 30.0 0.0220 0

We see that on the central line x2 = 0 the moment M1,1 (X1,0) is very

accurate, i.e. the error (with respect to the three dimensional solution) is

less than 0.1% In all reported points for both the RM and (1,1,2) models.

In addition the moment M1,1 (X1,0) is smooth up to the boundary. In

contrast, the moment M2,2 (x1,0) is smooth up to the boundary only for the RM

model, and the accuracy is very poor (30% error). The 3 dimensional and

(1,1,2) models clearly show the boundary layer and the error of (1,1,2) model

is practically acceptable.

To understand the boundary layer better let us define P(x1 ) so that

2



0 5-x IMMj~x1 0)_ -M N(1 0)I
exp {xp d 2,V-,expJR- -X} (0.5,0) -M2,(0.5,0)1

The function A characterizes the boundary layer and we can expect that for

Ix1-0.51 small, f is nearly constant. M-M2 x1 ,0) was used as the (smooth)

base function. In Table 2 we show values of A for the 3 dimensional and the

(1,1,2) model.

Table 2. The values of the function P(X

xI  3D (1,1,2)

0.4990 15.43 13.86
0.4996 18.17 13.41
0.4999 23.85 13.32
0.4993 24.13 13.31
0.4999 24.78 13.18

We see that the boundary layer of the three dimensional solution is still

stronger than that of the model (1,1,2); nevertheless, as we have seen in

Table 1, the values of the model (1,1,2) seems to be practically acceptable.

In section 3 we will show that for the (1,1,2) model we can expect

/120
1 - = 13.1.

The model (1,1,2) Is very robust for all types of practically important

boundary conditions. The RM model can yield good or bad results depending on

boundary conditions. See also (3] for further details.

In Section 2 we will briefly mention the concept of hierarchic plate

models. In Section 3 we will analyze the basic boundary layer property of the

model {1,1,2).

Computations reported In this paper have been made by the program

MSC I PROBE.
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2. Hierarchic plate models.

r3 d dl C3
Let 0 = 1x = (Xlx 2 ,x 3 )ER I (Xlx 2 )6W, -d<x 21 be the

plate t with thickness d. By F we denote the boundary of w. Further we

let

S = xER31(x 
dx

2 )Er- <x 3 <

R± = {xeR3(xlX2eF, x3 =±}

We will consider the plate problem as the 3 dimensional solution of

1
elasticity with homogeneous Isotropic model with - of normal load on upper and

2

lower surface R±.

As usual, denote the displacement vector by u = (u1 ,u2,u3 ), a = (i~ j

C = { i,j} the stress and strain tensor respectively and by CA(u) the

strain energy expressed with the usual Hooke's matrix A (c = Ac).

The exact 3 dimensional solution of the clamped-in plate problem

Is the minimizer of

GA(u) = gA(u)-Q(u)

over all uER(Q) = {ue(H (Q)) 3 , u = 0 on S},

and

Q r) (u (x1,x,4) + u (x1,x,X ))dx.Q~)=d d

By the index A we emphasized the use of the Hooke's matrix A. The solution

u under our assumption satisfies the symmetry conditions: uI(Xlx 2 ,x3) =

-uI(xl,x 2 ,-x3 ), I - 1,2, u3 (x1 ,x2,x3) = u3 (xl,x2,-x3 ).

Now let n - (nl,n2 ,n3), nI O, I - 1,2,3. By the n-hierarchical

solution u, we mean the minimizer of
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G B(u) = CB(u)-Q(u)

over the set I (n)(Mc R(Q) of all functions of the form

n!

(2.1) u (n) xx 2 ,x) . u (n)(Xlx 2x 3  I = 1,2,3.(21 u* 3 Ul, j  2 3

J=O

B denotes a Hooke's matrix, possibly with modified coefficients. Under

our assumption the symmetry of the load yields uI, j = 0 for j even and

I = 1,2 and u3,j = 0 for j odd.

We have shown in [4] that the solution of the model (1,1,0) is identical

with the Reissner-Mindlin solution provided a modified matrix B (B* A) is

used. The solution of the model (1,1,2) mentioned in the Table 1 is computed

for B = A.

We defined the solution for clamped-in plate only. It is obvious that

for general homogeneous boundary conditions only the constraint of R(M) on

S has to be modified.

If the solution u is independent of x2 and u2 = 0, then the Reissner-

Mindlin model becomes the Timoshenko beam and {u (n )} becomes a hierarchy of

the beam solutions. From (2.1), we can compute the moments M ,1 and M,,,, in

the usual way.

3) The hierarchy of the models.

In this section we will consider the hierarchy of the beam models for

plain strain. This is the special case of the plate when the solution is

independent of x2 and u2 = 0 (for example, an infinite strip plate).

The model (1,1,0) (with modified matrix B) leads to the well known

Timoshenko beam equation whose solution has no boundary layer.

The model (1,1.2) uses the set of functions

5



uI(Xlx 3 ) = Ul (xI)x 3

u(xl,x3) = u3(x )+u 
(xt)x 2

3 3 3,0 1 3,2 1 3

with u2 = 0. The Euler equations for the functions u, 1, u3 , u3 2 , of the

minimizer of GA are
-2

-12 pd (-u +u ) - (A+2p)u 1 + (2A-p)u' = 01,1 3,032

(3.1)

-12 pd 2 (-u +U' - pu" 12q
1,1 3,0 2

4(A+2p)u - 2Au' -p (-u + u3 )'
3,2 1 ,1 1,1 3 ,0

3 .Ad 2  _3d2q- -p u;, 2

where

(i+v)(1-2v) ' ' = 2(1+)

The boundary conditions for the clamped beam are u1 ,1 = u3 ,0 = u3,2 = 0.

System 3.1 can be solved explicitly. Assuming for simplicity that

1 1
-2< x1 < and q is symmetric then the solution is

122

2 1~

2E+v 11 + T])d [edi1 f le q(y)dy+ e fed q (y) dy]

0 0

V i-V) 2 12(1+V2} ) x-}

+ v(+v) 1i + d Jq(y)dy + 21 1 2 q(y)dyE 2E2

0 0
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(3.2)
r e 2

u3 () N C (e ;l + e X1] !- d 2 +C2 !i-v 1~ 2

Ed -f -fx,I y
+ e d g(y)dy-e d edg(y)dy

40V E
0 0

+ 2 (V2 +5v - 2 0 )d2f (x -Y)g(y)dy + 12(1_v2 ) 1(x )

(v-- E f-y d

0 0

r fru 3 2 (x! )= C1 e + e~ + v2" 1 d2

3(1-v) v (+lO)d e -y -

E 2V L eg(y)dy e d e g(y)dy

0 0

+ 6 (+v) -x y dyE (I-~gyd

0
where

1-v

and C1. C2 , C3 are constants which are determined from the boundary condition
1

at x, = (because of symmetry). Formulae (3.2) show that the boundary

layer for the model (1,1,2) for the beam Is of order V provided that the
1-v

constant C1 0. In the case of the clamped boundary for v >0 in fact

C1 * 0. The moments MlI(x 1 ) and M2,2x 1 ) are computed from u ,j( N).

In the similar way also higher models could be Investigated.

The behavior of the moment M2,2(x1,0) mentioned In the Section 1 is

very close the the beam behavior. In fact we see In the Table 2 very good

agreement with the strength of the boundary layer described here.

Finally we show another simple numerical example. Consider the plane

7



strain elasticity problem on the domain 0 = {1x11 <.5, Ix3 10.005} iIth

clamped-in boundary conditions for Ix 1 = 0.5.

7Consider the case when E = 10 7 V = 0.3 and a uniform load is imposed on

the upper and lower side. Because of symmetry, only one half (x1 >0) of

the domain will be considered. The solution of the model (1,1,2) is solved

by the p-version of the finite element using only 2 elements (0,0.492),

(0.492, 0.5) of degree p. For the analysis of the p-version for the beam

problem with relation to locking effects, we refer the reader to [5).

In Table 3, we show the strain energy ? of the finite element solution

as a function of p.

Table 3. Energy 9 of the finite element solution as function of p.

p 9.1 3

2 0.313411
3 0.376942
4 0.378874
5 0.379102
6 0.379162
7 0.379176
8 0.379178

Table 4 shows the moment M2 2 (xI) (for the beam understood as special case of

the plate) as function xI computed by elements of degree 8.

Table 4. The moment M2 2 (x1 ) for the (1,1,2) beam model
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xI  M2,2 (x). 102

0 -1.2496
0.2 -0.4966
0.4 +1.1503
0.45 1.7878
0.495 2.4225
0.4977 2.5216
0.4995 3.0536
0.49995 3.5062
0.5 3.5723

Approximating 10 2 ,2 (x) b$ A+Be ] = ,(X1)10 2  with A =

2.4673641, B = 1.1049693 we get the values reported in Table 5. We also

write the relative error In percent when values from Table 4 are used.

Table 5. The approximate moment M2,2(x1 ) and its error c

xl I2,2 10 c

0.495 2.4689 1.9
0.4977 2.5216 0
0.4995 3.0413 0.4
0.4995 3.5022 0.1
0.5000 3.5723 0

We see that the values in the table have the predicted boundary layer

behavior. We have very different behavior of M1, (x ) and M2,2(x1). The

equilibrium condition directly shows that the moment M1, I cannot have a

boundary layer. On the other hand the boundary layer of displacement vectors

has to lead to a boundary layer of M2,2.
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